Attention Mechanism on Question Answering over Knowledge Bases

Yuanzhe Zhang, Shizhu He, Kang Liu and Jun Zhao

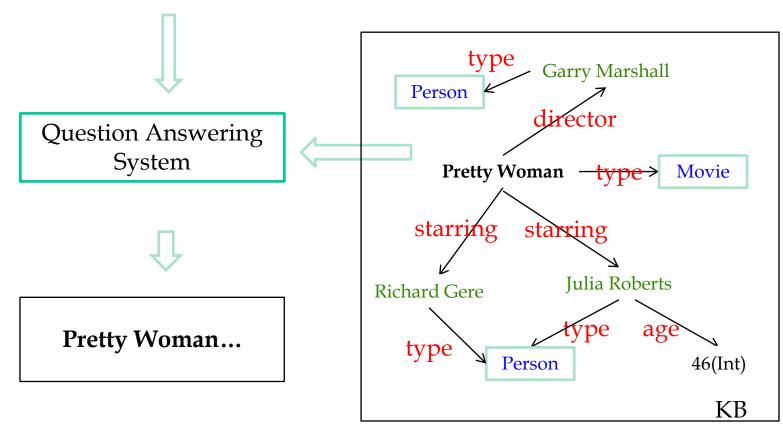
National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

Outline

- Task
- Introduction
- Our Proposed Approach
- Experiments

Question Answering over Knowledge Base

In which films directed by Garry Marshall was Julia Roberts starring?

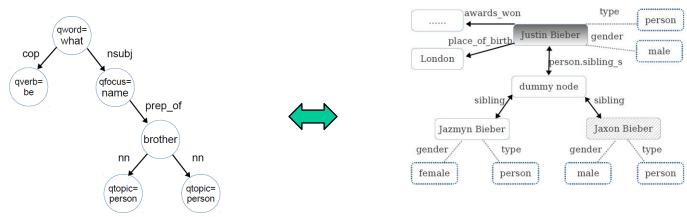


Question Answering over Knowledge Base (KB-QA)

 Semantic Parsing: transform questions into formal expressions, and query answer over KBs

where was Obama born?

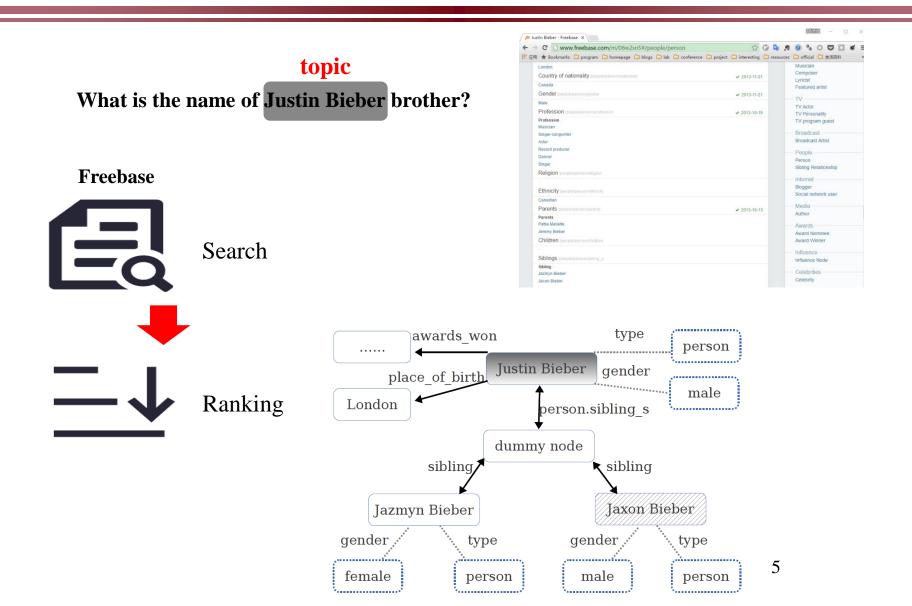
Retrieval-based QA: search candidate answers, and ranking



4

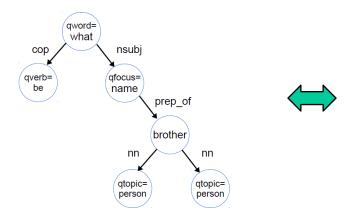
Retrieval-based QA

[Yao et al, ACL 2014]



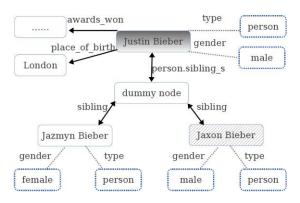
- Feature-based Ranking
 - From question
 - From knowledge base
 - From matching

7 million features



5_3
action
ts.date
)

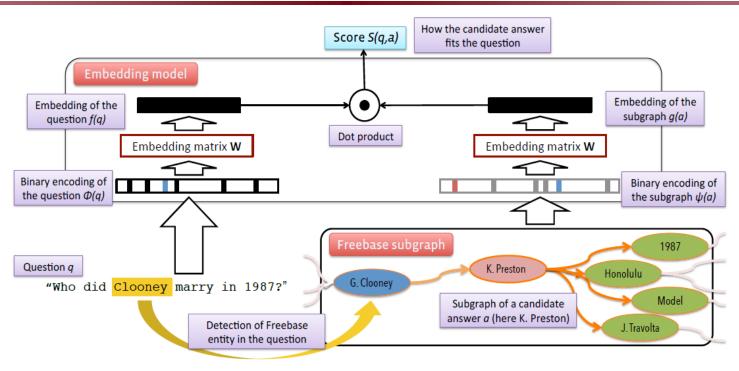
Table 6: A sample of the top 50 most positive/negative features. Features are production between question and node features (c.f. Figure 1).



what is the name of justin bieber brother?

Retrieval-based QA with Subgraph Embedding

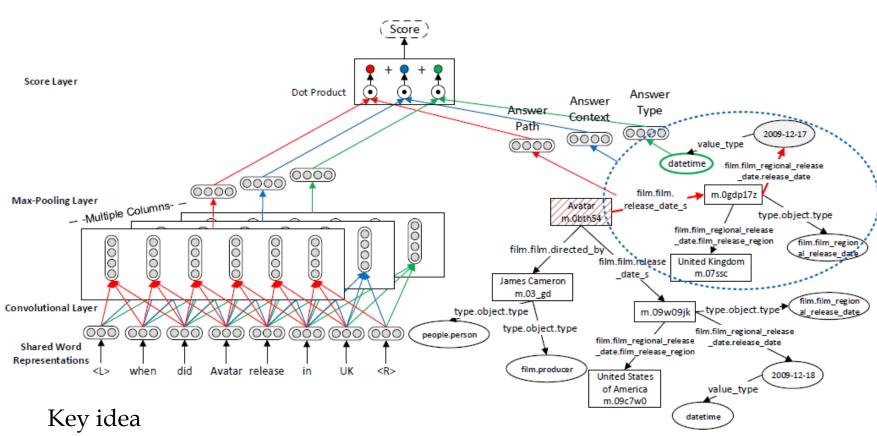
[Bordes et al, EMNLP 2014]



Representing candidate answers

- 1. single entity [....0.....1.....0.....]
- 2. path representation
 - 1-hop: question entity -> relation -> answer entity
 - 2-hop: question entity -> relation1 -> relation2 -> answer entity
- 3. subgraph representation

Retrieval-based QA with [Dong et al, ACL 2015] Multi-Column Convolutional Neural Networks



Represent question with CNN

Different evidences own different compositions

Entity-topic path

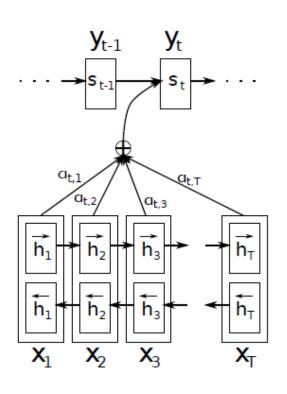
Entity type

Other contexts

Neural Machine Translation by Jointly Learning to Align and Translate [Dzmitry et al, ICLR 2015]

Key idea:

Tell the translator what is now translated.



$$p(y_{i}|y_{1},...,y_{i-1},\mathbf{x}) = g(y_{i-1},s_{i},c_{i})$$

$$s_{i} = f(s_{i-1},y_{i-1},c_{i})$$

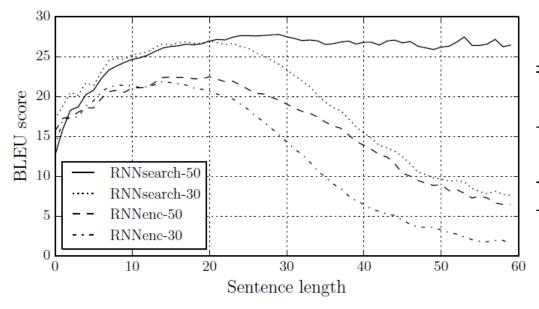
$$c_{i} = \sum_{j=1}^{T_{x}} \alpha_{ij}h_{j}$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_{x}} \exp(e_{ik})}$$

$$e_{ij} = a(s_{i-1},h_{j})$$

$$a(s_{i-1},h_{j}) = v_{a}^{\top} \tanh(W_{a}s_{i-1} + U_{a}h_{j})$$

Neural Machine Translation by Jointly Learning to Align and Translate [Dzmitry et al, ICLR 2015]

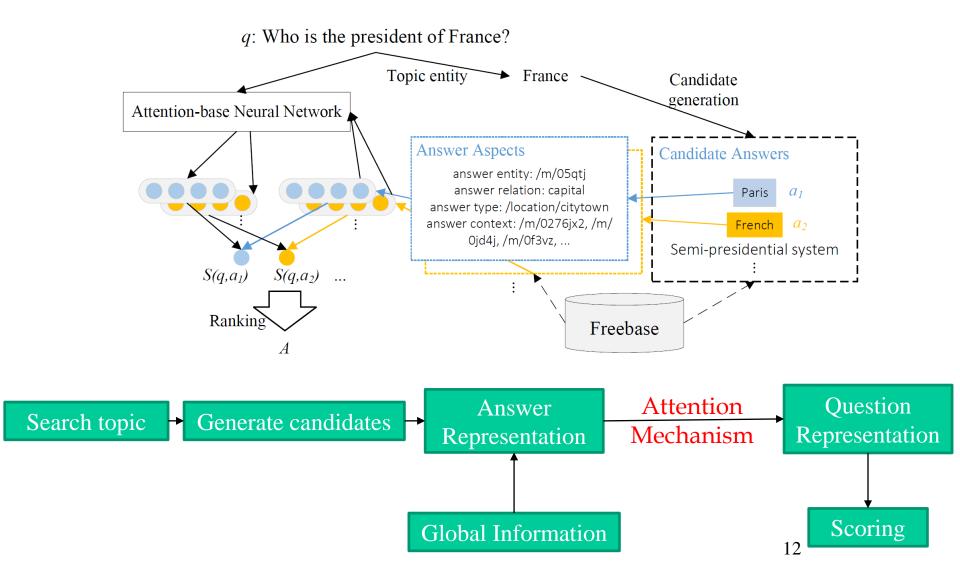


Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

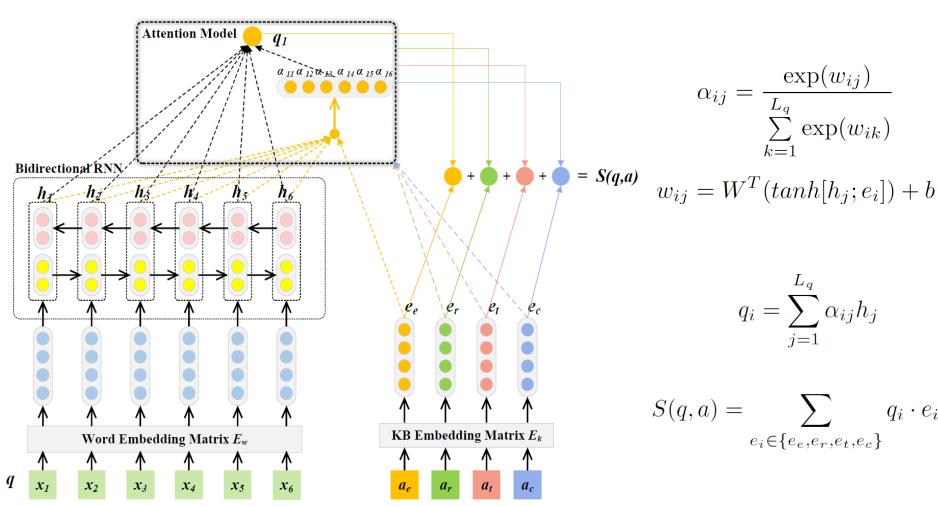
Outline

- Task
- Introduction
- Our Proposed Approach
- Experiments

KB-QA with Attention-based Neural Networks



KB-QA with **Attention-based Neural Networks**



$$\alpha_{ij} = \frac{\exp(w_{ij})}{\sum_{k=1}^{L_q} \exp(w_{ik})}$$

$$w_{ij} = W^T(tanh[h_j; e_i]) + b$$

$$q_i = \sum_{j=1}^{L_q} \alpha_{ij} h_j$$

$$S(q, a) = \sum_{e_i \in \{e_e, e_r, e_t, e_c\}} q_i \cdot e_i$$

KB-QA with Attention-based Neural Networks

Training:

Margin-based Ranking Loss

$$L_{q,a,a'} = [\gamma + S(q,a') - S(q,a)]_{+}$$

Objective function:

$$\min \sum_{q} \frac{1}{|P_q|} \sum_{a \in P_q} \sum_{a' \in N_q} L_{q,a,a'}$$

Inference:

$$S_{\max} = \underset{a \in C_q}{\operatorname{arg}} \max \{ S(q, a) \}$$

$$A = \{\hat{a}|S_{\text{max}} - S(q, \hat{a}) < \gamma\}$$

KB-QA with Attention-based Neural Networks

- ✓ 知识表示
 - ✓ 受限于训练语料
 - ✓ 未考虑全局信息
- ✓ 融入知识库全局信息
 - ✓ 利用了更多的知识库信息,知识库的资源表示更准确
 - ✓ 缓解未登录资源问题

TransE:将知识库资源被表示在低维向量空间上使用(s, p, o)来表示三元组,关系是向量空间上的一种操作 尾实体o的向量应该接近头实体s的向量加上关系p的向量,即 s + p = o

$$d(s+p,o) = ||s+p-o||_2^2$$

Loss Function:

$$L_k = \sum_{(s,p,o)\in S} \sum_{(s',p,o')\in S'} [\gamma_k + d(s+p,o) - d(s'+p,o')]_+$$

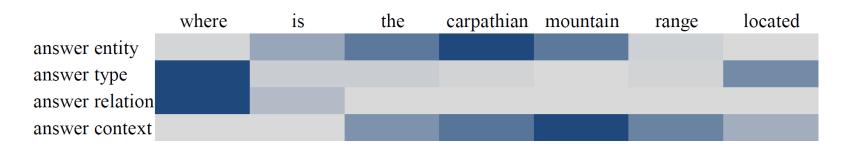
Experiments

Method	F_1
Bordes et al., 2014b	29.7
Bordes et al., 2014a	39.2
Yang et al., 2014	41.3
Dong et al., 2015	40.8
Bordes et al., 2015	42.2
ours	42.6

Method	F_1
LSTM	38.2
Bi_LSTM	38.9
Bi_LSTM + ATT	41.6
Bi_LSTM + GKI	40.4
Bi_LSTM + ATT + GKI	42.6

+different parts

Ours vs. NN models



Attention heat map

Thanks

Email: shizhu.he@nlpr.ia.ac.cn

