

Text-enhanced Representation Learning for Knowledge Graph

Reporter: Zhigang WANG Authors: Zhigang WANG, Juanzi LI, Zhiyuan LIU, Jie TANG Tsinghua University

> To appear in **IJCAI 2016** 2016-04-17

Outline

Introduction

Problem Definition

Our Proposed Approach

Experiments and Analysis

Conclusion

Representation Learning for KG

Input

a knowledge graph $\mathcal{KG} = \{(h, r, t)\}$

Target

To learn one embedding (a *k*-dimensional vector) for each entity: $h \to \vec{h}$ and $t \to \vec{t}$, where $\vec{h}, \vec{t} \in \mathbb{R}^{k}$

Translation-based Methods

TransE

- For each triple (head, relation, tail), treat *relation* as a translation from head to tail
- Simple, effective, and achieving the state-of-the-art performance

Bordes, et al. (2013). Translating embeddings for modeling multi-relational data. NIPS.

Translation-based Methods

TransH and TransR

Build relation-specific entity embeddings

TransR

Tasks	Predicting Head(Hits@10)			Predicting Tail(Hits@10)				
Relation Category	1-to-1	1-to-N	N-to-1	N-to-N	1-to-1	1-to-N	N-to-1	N-to-N
TransE (Bordes et al. 2013)	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0
TransH (unif) (Wang et al. 2014)	66.7	81.7	30.2	57.4	63.7	30.1	83.2	60.8
TransH (bern) (Wang et al. 2014)	66.8	87.6	28.7	64.5	65.5	39.8	83.3	67.2
TransR (unif)	76.9	77.9	38.1	66.9	76.2	38.4	76.2	69.1
TransR (bern)	78.8	89.2	34.1	69.2	79.2	37.4	90.4	72.1

Motivation 1. low performance on 1-to-N, N-to-1 and N-to-N relations

Wang, et al. (2014). Knowledge graph embedding by translating on hyperplanes. AAAI. Lin, et al. (2015). Learning entity and relation embeddings for knowledge graph completion. AAAI.

Translation-based Methods

Learn embeddings directly from the graph structure

- Graph sparseness
- In domain-specific and non-English situations

Motivation 2. limited performance by the structure sparseness of KG

Our Idea

Text-enhanced Representation Learning for KG

- Go back to traditional relation extraction
- Inspired by distant supervision

Triple:(Avatar, /film/film/directed_by, James Cameron)
$$\uparrow$$
 \uparrow \uparrow \uparrow Context:{film, movie, directed, ...} \downarrow \downarrow \uparrow \uparrow

James Francis Cameron, the famous director of the movie Avatar, is an ...Text:The fiction film Avatar directed by J. Cameron was nominated by ...In 1994 director James Cameron wrote an 80-page treatment for Avatar

Contributions: [Motivation 1]. Enable each relation to own different representations for different head and tail entities. [Motivation 2]. Incorporate the textual contexts to each entity and relation.

Outline

Introduction

Problem Definition

Our Proposed Approach

Experiments and Analysis

Conclusion

Problem Definition

Input

Knowledge Graph

$$\mathcal{KG} = \{(h, r, t)\}$$

Text Corpus

$$\mathcal{D} = \langle w_1 \dots w_i \dots w_m \rangle$$

Text-enhanced Knowledge Embedding (TEKE)

- learn the entity embeddings $h \to \vec{h} \in \mathbb{R}^k$ and $t \to \vec{t} \in \mathbb{R}^k$ for each triple (h, r, t) by utilizing the rich text information in \mathcal{D} to deal with
 - low performance on 1-to-N, N-to-1, N-to-N relations
 - knowledge graph sparseness
- learn the relation embedding $r \rightarrow \vec{r} \in \mathbb{R}^{k}$

Outline

Introduction

Problem Definition

Our Proposed Approach

Experiments and Analysis

Conclusion

Triple:

(Avatar, /film/film/directed_by, James Cameron)

Entity Annotation

Given the text corpus $\mathcal{D} = \langle w_1 \dots w_i \dots w_m \rangle$, use an entity linking tool to automatically label the entities in \mathcal{KG} , and get an entity-annotated text corpus:

$$\mathcal{D}' = \langle X_1 \dots X_i \dots X_{m'} \rangle$$

Textual Context Embedding

- co-occurrence network G = (X, Y)
 - $x_i \in \mathcal{X}$: denotes to the node (a word or an entity)
 - $y_{ij} \in \mathcal{Y}$: co-occurrence frequency between x_i and x_j

Textual Context Embedding

Pointwise textual context

$$\begin{split} \mathbf{n}(x_i) &= \left\{ x_j \middle| y_{ij} > \theta \right\} \\ \mathbf{n}(Avatar) &= \left\{ film, movie, directed \dots \right\} \\ \mathbf{n}(James_Cameron) &= \left\{ director \dots \right\} \end{split}$$

Pairwise textual context

$$n(x_i, x_j) = \{x_k | x_k \in n(x_i) \cap n(x_j)\}$$

n(Avatar, James_Cameron) = {direct ... }

Textual Context Embedding

- Word Embedding Learning $x_i \rightarrow x_i$
- Pointwise textual context embedding of x_i:

$$\boldsymbol{n}(x_i) = \frac{1}{\sum_{x_j \in \mathbf{n}(x_i)} y_{ij}} \sum_{x_j \in \mathbf{n}(x_i)} y_{ij} \cdot \boldsymbol{x}_j$$

Pairwise textual context embedding of x_i and x_j:

$$\boldsymbol{n}(x_i, x_j) = \frac{1}{Z} \sum_{x_k \in \mathbf{n}(x_i, x_j)} \min(y_{ik}, y_{jk}) \cdot \boldsymbol{x}_k$$

Entity/Relation Representation Modeling

 Incorporate the textual context information to the representation learning on knowledge graph

a
$$\hat{h} = \hat{n}(\hat{h})A + \hat{h}$$
b Linear transformation of textual context information
a $\hat{t} = \hat{n}(\hat{t})A + \hat{t}$
b $\hat{t} = \hat{n}(\hat{t})A + \hat{t}$
b $\hat{t} = \hat{n}(\hat{t},\hat{t})A + \hat{t}$
c $\hat{t} = \hat{n}(\hat{h},\hat{t})A + \hat{t}$
c $\hat{t} = \hat{t} = \hat$

Representation Training

Margin-based score function

$$L = \sum_{(h,r,t)\in\mathcal{S}} \sum_{(h',r,t')\in\mathcal{S}'} \max(0, f(h,r,t) + \gamma - f(h',r,t'))$$

Stochastic gradient descent (SGD)

Outline

Introduction

Problem Definition

Our Proposed Approach

Experiments and Analysis

Conclusion

Experiments and Analysis

Datasets

4 benchmark knowledge graphs

		Statistics U			
Dataset	#Relations	#Entities	#Triples	(Train/Vali	id/Test)
WN18	18	40,943	141,442	5,000	5,000
FB15K	1,345	14,951	483,142	50,000	59,071
WN11	11	38,696	112,581	2,609	10,544
FB13	13	75,043	316,232	5,908	23,733

Table 1: Statistics of the data sets

Entity-annotated Wikipedia corpuses

Table 2: Statistics of entity-annotated Wikipedia corpuses.

		•	<u> </u>
KG	#Entities	#Annotated Entities	#Word Stems
WN18	40,943	32249	1,529,251
FB15K	14,951	14,405	744,983
WN11	38,696	30,937	1,526,467
FB13	75,043	69,208	706,484

Experiments and Analysis

Evaluation

- (China, /location/location/adjoin, North_Korea)
- Link Prediction
 - Mean Rank: 11
 - Hits@10: 0%
 - Raw; Filter: 9; 100%
- Triple Classification
 - a binary classification task

Head	China					
Relation	/location/location/adjoin					
1	Japan					
2	Taiwan					
3	Israel					
4	South_Korea					
5	Argentina					
6	France					
7	Philippines					
8	Hungary					
9	Germany					
10	USA					
11	North_Korea					

Link Prediction

TEKE compare with baselines

Table 3: Experimental Results on Link Prediction.								
Datasets		W	N18		FB15K			
Metric	Mean	Mean Rank		Hits@10(%)		Mean Rank		10 (%)
Wiethe	Raw	Filter	Raw	Filter	Raw	Filter	Raw	Filter
TransE / TEKE_E	263 / 140	251 / 127	75.4 / 80.0	89.2 / 93.8	243 / 233	125 / 79	34.9 / 43.5	47.1 / 67.6
TransH / TEKE_H unif	318 / 142	303 / 128	75.4 / 79.7	86.7 / 93.6	211 / 228	84 / 75	42.5 / 44.9	58.5 / 70.4
TransH / TEKE_H bern	401 / 127	388 / 114	73.0 / 80.3	82.3 / 92.9	212 / 212	87 / 108	45.7 / 51.2	64.4 / 73.0
TransR / TEKE_R unif	232 / 203	219 / 203	78.3 / 78.4	91.7 / 92.3	226 / 237	78 / 79	43.8 / 44.3	65.5 / 68.5
TransR / TEKE_R bern	238 / 197	225 / 193	79.8 / 79.4	92.0 / 91.8	198 / 218	77 / 109	48.2 / 49.7	68.7 / 71.9

A lower Mean Rank is better while a higher Hits@10 is better

Mean Rank

- TEKE methods perform much better than the baselines on WN18.
- No much improvement is observed on FB15K
- Hits@10
 - TEKE methods outperform other baselines significantly and consistently

Link Prediction

Capability to handle 1-to-N, N-to-1 and N-to-N relations

■ FB15K: 1-1, 1-N, N-1, N-N → 24.2%, 22.9%, 28.9%, 24.0%

Table 4: Experimental Results on FB15K by Mapping Properties of Relations. (%)

Tasks	Prediction Head (Hits@10)			Prediction Tail (Hits@10)				
Relation Category	1-to-1	1-to-N	N-to-1	N-to-N	1-to-1	1-to-N	N-to-1	N-to-N
TransE/TEKE_E	43.7 / 48.9	65.7 / 72.1	18.2 / 52.3	47.2 / 76.8	43.7 / 46.3	19.7 / 50.2	66.7 / 75.3	50.0 / 76.1
TransH/TEKE_H unif	66.7 / 66.6	81.7 / 80.9	30.2 / 58.0	57.4 / 79.6	63.7 / 60.5	30.1 / 60.4	83.2 / 81.5	60.8 / 80.2
TransH/TEKE_H bern	66.8 / 69.3	87.6 / 90.8	28.7 / 54.1	64.5 / 82.0	65.5 / 60.7	39.8 / 61.5	83.3 / 88.3	67.2 / 82.1
TransR/TEKE_R unif	76.9 / 66.2	77.9 / 82.0	38.1 / 57.0	66.9 / 81.3	76.2 / 62.5	38.4 / 57.5	76.2 / 83.1	69.1 / 81.2
TransR/TEKE_R bern	78.8 / 70.1	89.2 / 89.3	34.1 / 54.0	69.2 / 81.7	79.2 / 69.6	37.4 / 59.2	90.4 / 89.2	72.1 / 83.5

- TEKE methods significantly outperform the baselines when predicting the entity where multiple entities could be correct.
- TEKE methods have not shown much advantage for predicting the entity where only one entity is correct.

Link Prediction

Capability to handle knowledge graph sparseness

Table 5: Datasets with different densities.						
Dataset	$\#\mathcal{E}$	$\#\mathcal{R}$	$\#\mathcal{T}$	$\#\mathcal{T}/\#\mathcal{E}$	$\#\mathcal{T}/\#\mathcal{R}$	
FB3K	3,000	613	19,339	6.45	31.55	
FB6K	6,000	913	75,347	12.56	82.53	
FB9K	9,000	1,094	167,191	18.58	152.83	

 \mathcal{T} represents the training triples.

Rank 3,000 entities for 2,238 triples for all three datasets

 Table 6: Mean Rank Comparison.

Methods	TransE / TEKE_E						
Metric	Ra	lW	Fil	ter			
FB3K	102.7	94.9	41.7	34.8			
FB6K	81.9	78.1	29.8	25.6			
FB9K	79.5	77.0	27.6	24.7			

- As the graph density gets higher, both TransE and TEKE_E perform better.
- TEKE_E achieves the highest improvement on the sparsest FB3K dataset.

Triple Classification

TEKE compare with baselines

Table 7: Evaluation results of triple classification. (%)

Datasets	WN11	FB13
TransE/TEKE_E unif	75.9 / 84.1	70.9 / 75.1
TransE/TEKE_E bern	75.9 / 84.5	81.5 / 82.1
TransH/TEKE_Hunif	77.7 / 84.3	76.5 / 77.4
TransH/TEKE_H bern	78.8 / 84.8	83.3 / 84.2
TransR / TEKE_R unif	85.5 / 85.2	74.7 / 77.1
TransR / TEKE_R bern	85.9 / 86.1	82.5 / 81.6

- TEKE_E and TEKE_H consistently outperform the comparison methods, especially on WN11.
- TEKE_R (unif) on WN11 and TEKE_R (bern) on FB13 perform better than TransR, while others perform a bit worse.

Outline

Introduction

Problem Definition

Our Proposed Approach

Experiments and Analysis

Conclusion

Conclusion and Future Work

- A novel text-enhanced knowledge embedding method named TEKE for knowledge graph representation learning to deal with
 - Low performance on 1-to-N, N-to-1 and N-to-N relations
 - Limited performance by structure sparseness of KG

Future Work

. . .

- Improve performance on 1-to-1 relations
- Experimentally analyze the influence of entity annotation
- Use different text corpus
- Incorporate knowledge reasoning

Thanks!

Zhigang WANG wangzigo@gmail.com http://xlore.org/

