Knowledge Graph Embedding
For Precise Link Prediction

Han Xiao, Minlie Huang, Xiaoyan Zhu
Tsinghua University
April 17, 2016
Precise Link Prediction attempts to find the exact entity given another entity and the relation.

Motivations.
- Being *ill-posed algebraic system*.
 - There are Td equations $(h_i + r_i = t_i)$.
 - There are $(E + R)d$ variables.
 - Since $T \gg E + R$, it is an *ill-posed algebraic system*.
- Adopting *over-strict geometric form*.
ManifoldE: From A Point To A Manifold

Methodology. To apply the manifold-based principle:

\[
M(h, r, t) = D_r^2
\]

When a head entity and a relation are given, the tail entities lay in a high-dimensional manifold.

\[
f_r(h, t) = ||M(h, r, t) - D_r^2||^2
\]
ManifoldE: From A Point To A Manifold

- **Sphere.**
 \[
 \mathcal{M}(h, r, t) = \|h + r - t\|^2
 \]

- **Hyperplane.**
 \[
 \mathcal{M}(h, r, t) = (h + r_{\text{head}})^\top(t + r_{\text{tail}})
 \]
ManifoldE: From A Point To A Manifold

- **Geometric Perspective.**
 - Manifold-Based principle extends one point to a whole manifold, to strengthen the stability.
 - This way would benefit complex relations.

- **Algebraic Perspective.**
 - There are one equation for one triple.
 - Thus, if \(d \geq \frac{T}{E+R} \), the system is far away from ill-posed.

- **Training.**

\[
\mathcal{L} = \sum_{(h,r,t) \in \Delta} \sum_{(h',r',t') \in \Delta'} \left[f_r(h', t') - f_r(h, t) + \gamma \right]_+
\]
Experiments: Link Prediction.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>WN18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HITS@10(%)</td>
</tr>
<tr>
<td></td>
<td>Raw</td>
</tr>
<tr>
<td>TransE</td>
<td>75.4</td>
</tr>
<tr>
<td>TransH</td>
<td>73.0</td>
</tr>
<tr>
<td>TransR</td>
<td>79.8</td>
</tr>
<tr>
<td>PTransE</td>
<td>-</td>
</tr>
<tr>
<td>KG2E</td>
<td>80.2</td>
</tr>
<tr>
<td>ManifoldE S.</td>
<td>80.7</td>
</tr>
<tr>
<td>ManifoldE H.</td>
<td>84.2</td>
</tr>
</tbody>
</table>
Experiments: Link Prediction.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>FB15K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metric</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TransE</td>
<td></td>
</tr>
<tr>
<td>TransH</td>
<td></td>
</tr>
<tr>
<td>TransR</td>
<td></td>
</tr>
<tr>
<td>PTransE</td>
<td></td>
</tr>
<tr>
<td>KG2E</td>
<td></td>
</tr>
<tr>
<td>ManifoldE S.</td>
<td></td>
</tr>
<tr>
<td>ManifoldE H.</td>
<td></td>
</tr>
</tbody>
</table>
Experiments: Triple Classification.

<table>
<thead>
<tr>
<th>Methods</th>
<th>WN11</th>
<th>FB13</th>
<th>AVG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>53.0</td>
<td>75.2</td>
<td>64.1</td>
</tr>
<tr>
<td>NTN</td>
<td>70.4</td>
<td>87.1</td>
<td>78.8</td>
</tr>
<tr>
<td>TransE</td>
<td>75.9</td>
<td>81.5</td>
<td>78.7</td>
</tr>
<tr>
<td>TransH</td>
<td>78.8</td>
<td>83.3</td>
<td>81.1</td>
</tr>
<tr>
<td>TransR</td>
<td>85.9</td>
<td>82.5</td>
<td>84.2</td>
</tr>
<tr>
<td>KG2E</td>
<td>85.4</td>
<td>85.3</td>
<td>85.4</td>
</tr>
<tr>
<td>ManifoldE Sphere</td>
<td>87.5</td>
<td>87.2</td>
<td>87.4</td>
</tr>
<tr>
<td>ManifoldE Hyperplane</td>
<td>86.9</td>
<td>87.3</td>
<td>87.1</td>
</tr>
</tbody>
</table>
Knowledge Semantic Representation
An Interpretable Knowledge Graph Representation

Han Xiao, Minlie Huang, Xiaoyan Zhu

Tsinghua University

April 17, 2016
Knowledge Semantic Representation

- **Motivations** Geometrical positions as knowledge representation could not explicitly indicate the semantics.
 - The representation entity *Table* in TransE:

 \[(0.12, -0.22, 0.55, 0.60, 0.71, -0.01, 0.00, -0.77...)\]

- **Could we tell about something semantic?**
 - being a furniture?
 - being a daily tool?
 - being not an animal?

- The **GAP** between knowledge and language remains.
- Thus, developing a *semantics-specific representation* triggers an urgent task.
- A well-fitting model for knowledge graph is encouraging, but is still not enough from the semantic perspective.
Knowledge Semantic Representation

- **Knowledge Semantic Analysis (KSA)**
 - **Definitions**: A knowledge representation methodology that is supposed to explicitly provide human-comprehensive or at least semantics-relevant representation
 - *(Stanford University) = (University:Yes, Animal:No, Location:California, ...)*

- **Knowledge Feature** is a term we introduced for describing some knowledge semantic aspects.

- **Benefits**
 - The trade-off between *Human-Comprehensive* and *Machine-Computational* Knowledge Representation.
 - At least, in this way, it is more elegant to joint multiple information sources and knowledge triples.
A Naive Example in the scenario of information retrieval.

Query: What private university is most famous in California?

1. Extracting the keywords: private, university, famous, California.
2. Mapping to knowledge feature: (University:Yes, Animal:No, Location:California, Type:Private, Famous:Very, ...).
3. Inferring the possible entity/relation (Stanford University) as the answer with link prediction task.

Notably, our model KSR is a generative model, which could generate the representations, while it is also capable to infer towards entities/relations.
Model Descriptions KSR leverages a two-level hierarchical generative process to semantically represent the entities, relations and triples.

1. In the first level of our model, we generate some knowledge features such as University (YES/NO), Animal Type, Location, etc.
2. In the second level of our model, we assign a corresponding category in each knowledge feature for every triple.
Knowledge Semantic Representation

- **Model Descriptions** KSR leverages a two-level hierarchical generative process to semantically represent the entities, relations and triples.

 1. In the first level of our model, we generate some knowledge features such as University(YES/NO), Animal Type, Location, etc.

 2. In the second level of our model, we assign a corresponding category in each knowledge feature for every triple.

 For the example of **Stanford University**, we assign Yes in the University feature, California in Location feature and so on.

 \[
 (\text{University} : \text{Yes}, \text{Animal} : \text{No}, \text{Location} : \text{California},
 \text{Type} : \text{Private}, \text{Famous} : \text{Very}, ...)
 \]

 In this way, the knowledge representation is semantically interpretable.
Knowledge Semantic Representation

Clustering Perspective (Basic Idea)

How to Categorize?

<table>
<thead>
<tr>
<th>Hallow</th>
<th>Slas</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shape

Content

Knowledge Feature

Semantic Representation

Square

Star

{(S,H) (T,H)}
{(S,S) (T,S)}
{(S,D) (T,D)}
Knowledge Semantic Representation

- **Clustering Perspective (Simple Illustration)**

A pool of Knowledge

- **Triples Information**
- **Location**

<table>
<thead>
<tr>
<th>Knowledge Feature</th>
<th>University</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsinghua University</td>
<td>Beijing</td>
<td>Yes</td>
</tr>
<tr>
<td>Tiananmen Square</td>
<td>Beijing</td>
<td>No</td>
</tr>
<tr>
<td>Fudan University</td>
<td>Shanghai</td>
<td>Yes</td>
</tr>
<tr>
<td>Oriental Pearl</td>
<td>Shanghai</td>
<td>No</td>
</tr>
</tbody>
</table>
Knowledge Semantic Representation

- **Clustering Perspective (Model Analysis)**

![Diagram](image)

- **Latent Semantics Mapping.** Naively to adopt very little hand-craft analysis.
Experiments: Knowledge Graph Completion

<table>
<thead>
<tr>
<th>Datasets</th>
<th>FB15K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HITS@10(%)</td>
</tr>
<tr>
<td>Metric</td>
<td>Raw</td>
</tr>
<tr>
<td>TransE</td>
<td>243</td>
</tr>
<tr>
<td>TransH</td>
<td>212</td>
</tr>
<tr>
<td>KSR (S1)</td>
<td>178</td>
</tr>
<tr>
<td>TransR</td>
<td>198</td>
</tr>
<tr>
<td>KG2E</td>
<td>183</td>
</tr>
<tr>
<td>KSR (S2)</td>
<td>159</td>
</tr>
</tbody>
</table>
Knowledge Semantic Representation

- **Experiments**: Entity Classification
- Relatively 17% Improvement.
- Details presented in our paper.
Knowledge Semantic Representation

- **Experiments**: Semantic Analysis
- Case Study presented in our paper.
- At least we feel good.
Knowledge Semantic Representation

- **Experiments**: Description to Entity Analysis
- Task.
- Will be done.
- Case Study will be presented in our paper.
- Currently, at least, we feel good.
Knowledge Semantic Representation

Thanks for your attention.