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Abstract

In the encoder-decoder architecture for
neural machine translation (NMT), the
hidden states of the recurrent structures in
the encoder and decoder carry the crucial
information about the sentence.These vec-
tors are generated by parameters which are
updated by back-propagation of translation
errors through time. We argue that prop-
agating errors through the end-to-end re-
current structures are not a direct way of
control the hidden vectors. In this paper,
we propose to use word predictions as a
mechanism for direct supervision. More
specifically, we require these vectors to
be able to predict the vocabulary in tar-
get sentence. Our simple mechanism en-
sures better representations in the encoder
and decoder without using any extra data
or annotation. It is also helpful in reduc-
ing the target side vocabulary and improv-
ing the decoding efficiency. Experiments
on Chinese-English and German-English
machine translation tasks show BLEU im-
provements by 4.53 and 1.3, respectively.

1 Introduction

The encoder-decoder based neural machine trans-
lation (NMT) models (Sutskever et al., 2014;
Cho et al., 2014) have been developing rapidly.
Sutskever et al. (2014) propose to encode the
source sentence as a fixed-length vector repre-
sentation, based on which the decoder gener-
ates the target sequence, where both the en-
coder and decoder are recurrent neural net-
works (RNN) (Sutskever et al., 2014) or their vari-
ants (Cho et al., 2014; Chung et al., 2014; Bah-
danau et al., 2014). In this framework, the fixed-
length vector plays the crucial role of transition-

ing the information of the sentence from the source
side to the target side.
Later, attention mechanisms are proposed to en-

hance the source side representations (Bahdanau
et al., 2014; Luong et al., 2015b). The source side
context is computed at each time-step of decod-
ing, based on the attention weights between the
source side representations and the current hidden
state of the decoder. However, the hidden states
in the recurrent decoder still originate from the
single fixed-length representation (Luong et al.,
2015b), or the average of the bi-directional repre-
sentations (Bahdanau et al., 2014). Here we refer
to the representation as initial state.
Interestingly, Britz et al. (2017) find that the

value of initial state does not affect the translation
performance, and prefer to set the initial state to
be a zero vector. On the contrary, we argue that
initial state still plays an important role of transla-
tion, which is currently neglected. We notice that
beside the end-to-end error back propagation for
the initial and transition parameters, there is no di-
rect control of the initial state in the current NMT
architectures. Due to the large number of param-
eters, it may be difficult for the NMT system to
learn the proper sentence representation as the ini-
tial state. Thus, themodel is very likely to get stuck
in local minimums, making the translation process
arbitrary and unstable.
In this paper, we propose to augment the current

NMT architecture with a word prediction mecha-
nism. More specifically, we require the initial state
of the decoder to be able to predict all the words
in the target sentence. In this way, there is a spe-
cific objective for learning the initial state. Thus
the learnt source side representation will be bet-
ter constrained. We further extend this idea by ap-
plying the word predictions mechanism to all the
hidden states of the decoder. So the transition be-
tween different decoder states could be controlled
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Neural Machine Translation 
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Encoder-Decoder Framework 

• Encoder: encode all information of source sentence and generate the Initial State

• Decoder: decode target sentence start from Initial State
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Encoder-Decoder Framework 

• Encoder and Decoder are connected by Initial State
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Encoder-Decoder Framework 

• Initial State has all target information

• Hidden States of Decoder have target information which have not been generated
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Shortage 

• Initial State does not have a direct control

• Hidden States of Decoder are just supervised by current word 
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Motivation 

• The initial state and hidden state plays an important role of translation, but 
it does not have a good control in the currently research

• Propagating translation errors through the end-to-end recurrent structures 
is not enough of control the hidden states
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Word Prediction  

• Translation task to generate an ordered sequence
• The goal of word prediction is to generate several words which is no order
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Word Prediction  

• Words in the target sentence could be viewed as a natural annotation
• Initial State and Hidden States should contain information about words in 

target sentence
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Word Prediction  

• For the Initial State (WPE)

• For Decoder’s Hidden States (WPD) 
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WP for the Initial State 

• Initial State is responsible for the translation of whole target sentence, it should contain 

information of each word in the target sentence 
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Figure 1: The NMT model with word prediction for the initial state.

omit the bias term in each network layer. The
backward RNN encoder is defined likewise.
In the decoding stage, the decoder starts with the

initial state s0, which is the average of source rep-
resentations (Bahdanau et al., 2014).

s0 = σ(Ws
1

|x|

|x|∑

i=1

hi) (6)

At each time step j, the decoder maximizes the
conditional probability of generating the jth target
word, which is defined as:

P (yj |y<j , x) = fd(td([embyj−1 ; sj ; cj ])) (7)
fd(u) = softmax(Wfu) (8)
td(v) = tanh(Wtv) (9)

where sj is the decoder’s hidden state, which is
computed by another GRU (as in Equation 2):

sj = gd(sj−1, [embyj−1 ; cj ]) (10)

and the context vector cj is from the attention
mechanism (Luong et al., 2015b):

cj =
|x|∑

i=1

ajihi (11)

aji =
exp(eji)

∑|x|
k=1 exp(ejk)

(12)

eji = tanh(Wattd [sj−1; hi]). (13)

4 NMT with Word Predictions

4.1 Word Prediction for the Initial State
The decoder starts the generation of target sentence
from the initial state s0 (Equation 6) generated by
the encoder. Currently, the update for the encoder

only happens when a translation error occurs in the
decoder. The error is propagated through multiple
time steps in the recurrent structure until it reaches
the encoder. As there are hundreds of millions of
parameters in the NMT system, it is hard for the
model to learn the exact representation of source
sentences. As a result, the values of initial state
may not be exact during the translation process,
leading to poor translation performances.
We propose word prediction as a mechanism to

control the values of initial state. The intuition
is that since the initial state is responsible for the
translation of whole target sentence, it should at
least contain information of each word in the tar-
get sentence. Thus, we optimize the initial state by
making prediction for all target words. For sim-
plicity, we assume each target word is independent
of each other.
Here the word prediction mechanism is a sim-

pler sub-task of translation, where the order of
words is not considered. The prediction task could
be trained jointly with the translation task in a
multi-task learningway (Luong et al., 2015a; Dong
et al., 2015; Zhang and Zong, 2016), where both
tasks share the same encoder. In other words, word
prediction for the initial state could be interpreted
as an improvement for the encoder. We denote this
mechanism as WPE .
As shown in Figure 1, a prediction network is

added to the initial state. We define the conditional
probability of WPE as follows:

PWPE(y|x) =
|y|∏

j=1

PWPE(yj |x) (14)

PWPE(yj |x) = fp(tp([s0; cp])) (15)

where fp(·) and tp(·) are the softmax layer and
non-linear layer as defined in Equation 8-9, with
different parameters; cp is defined similar as the
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WP for Decoder’s Hidden States 

• The hidden states of Decoder are responsible for the translation of target words, and they 

should contain information of each word which have not been translated 
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Figure 2: The NMT model with word predictions for the decoder’s hidden states.

attention network, so the source side information
could be enhanced.

cp =
|x|∑

i=1

aihi (16)

ai =
exp(ei)

∑|x|
k=1 exp(ek)

(17)

ei = tanh(Wattp [s0, hi]). (18)

4.2 Word Predictions for Decoder’s Hidden
States

Similar intuition is also applied for the decoder.
Because the hidden states of the decoder are re-
sponsible for the translation of target words, they
should be able to predict the target words as well.
The only difference is that we remove the already
generated words from the prediction task. So each
hidden state in the decoder is required to predict
the target words which remain untranslated.
For the first state s1 of the decoder, the predic-

tion task is similar with the task for the initial state.
Since then, the prediction is no longer a separate
training task, but integrated into each time step of
the training process. We denote this mechanism as
WPD.
As shown in Figure 2, for each time step j in the

decoder, the hidden state sj is used for the predic-
tion of (yj , yj+1, · · · , y|y|). The conditional prob-
ability of WPD is defined as:

PWPD(yj , yj+1, · · · , y|y||y<j , x) (19)

=

|y|∏

k=j

PWPD(yk|y<j , x)

PWPD(yk|y<j , x) =fd(p(td([embyj−1 ; sj ; cj ])))
(20)

where fd(·) and td(·) are the softmax layer and
non-linear layer as defined in Equation 8-9; p(·)

is another non-linear transformation layer, which
prepares the current state for the prediction:

p(u) = tanh(Wpu). (21)

4.3 Training

NMT models optimize the networks by maximiz-
ing the likelihood of the target translation y given
source sentence x, denoted by LT.

LT =
1

|y|

|y|∑

j=1

logP (yj |y<j , x) (22)

where P (yj |y<j , x) is defined in Equation 7.
To optimize the word prediction mechanism, we

propose to add extra likelihood functionsLWPE and
LWPD into the training procedure.
For the WPE, we directly optimize the likeli-

hood of translation and word prediction:

L1 = LT + LWPE (23)
LWPE = logPWPE (24)

where PWPE is defined in Equation 14.
For the WPD, we optimize the likelihood as:

L2 = LT + LWPD (25)

LWPD =

|y|∑

j=1

1

|y|− j + 1
logPWPD (26)

where PWPD is defined in Equation 19; the coeffi-
cient of the logarithm is used to calculate the aver-
age probability of each prediction.
The two mechanisms could also work together,

so that both the encoder and the decoder could be
improved:

L3 = LT + LWPE + LWPD . (27)
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exp(ei)
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(17)

ei = tanh(Wattp [s0, hi]). (18)

4.2 Word Predictions for Decoder’s Hidden
States

Similar intuition is also applied for the decoder.
Because the hidden states of the decoder are re-
sponsible for the translation of target words, they
should be able to predict the target words as well.
The only difference is that we remove the already
generated words from the prediction task. So each
hidden state in the decoder is required to predict
the target words which remain untranslated.
For the first state s1 of the decoder, the predic-

tion task is similar with the task for the initial state.
Since then, the prediction is no longer a separate
training task, but integrated into each time step of
the training process. We denote this mechanism as
WPD.
As shown in Figure 2, for each time step j in the

decoder, the hidden state sj is used for the predic-
tion of (yj , yj+1, · · · , y|y|). The conditional prob-
ability of WPD is defined as:

PWPD(yj , yj+1, · · · , y|y||y<j , x) (19)

=

|y|∏

k=j

PWPD(yk|y<j , x)

PWPD(yk|y<j , x) =fd(p(td([embyj−1 ; sj ; cj ])))
(20)

where fd(·) and td(·) are the softmax layer and
non-linear layer as defined in Equation 8-9; p(·)

is another non-linear transformation layer, which
prepares the current state for the prediction:

p(u) = tanh(Wpu). (21)

4.3 Training

NMT models optimize the networks by maximiz-
ing the likelihood of the target translation y given
source sentence x, denoted by LT.

LT =
1

|y|

|y|∑

j=1

logP (yj |y<j , x) (22)

where P (yj |y<j , x) is defined in Equation 7.
To optimize the word prediction mechanism, we

propose to add extra likelihood functionsLWPE and
LWPD into the training procedure.
For the WPE, we directly optimize the likeli-

hood of translation and word prediction:

L1 = LT + LWPE (23)
LWPE = logPWPE (24)

where PWPE is defined in Equation 14.
For the WPD, we optimize the likelihood as:

L2 = LT + LWPD (25)

LWPD =

|y|∑

j=1

1

|y|− j + 1
logPWPD (26)

where PWPD is defined in Equation 19; the coeffi-
cient of the logarithm is used to calculate the aver-
age probability of each prediction.
The two mechanisms could also work together,

so that both the encoder and the decoder could be
improved:

L3 = LT + LWPE + LWPD . (27)

WP for Decoder’s Hidden States 



12017/7/26 1

Prajit Ramachandran       Peter J. Liu    Quoc V. Le

Weng Rongxiang

Make use of word predictor 

• Using large vocabulary will reduce decoding efficiency

• Exact small vocabulary will produce better translation effects

• In  the  testing  stage,  word  prediction  mechanism  can  predict  a  small 

vocabulary to decode
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Make use of word predictor 

• Predicting top-k words as new vocabulary

• Using the new vocabulary to decode
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• Chinese-English (CH-EN)

• German-English (DE-EN)

• 8M LDC data set as training set

• MT02 as validation set 

• MT03, MT04 and MT05 as test sets

• Both validation set and test sets have 4 references 

• WMT14 as training set

• Newstest 2012 as validation set

• Newstest 2013 as test set

• Both validation set and test set have 1 reference 

Data and Setting 
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• The source and target vocabularies are limited to the most frequent 30K 
words

• The out-of-vocabulary words mapped to a special token UNK.
• Using EOS as the end-of-sentence symbol 
• Sentences  were  encoded  using  byte-pair  encoding  (BPE)  on  DE-EN 

experiments

Data and Setting 
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Translation quality 

• Using  WPED  technique  improves  the  baseline  by  4.53  BLEU  on  the  CH-EN 

experiment and 1.3 BLEU on the DE-EN experiment 

Chinese-English

German-English

Models MT02(dev) MT03 MT04 MT05 Test Ave. IMP
baseNMT 34.04 34.92 36.08 33.88 34.96 −
WPE 39.36 37.17 39.11 36.20 37.49 +2.53
WPD 40.28 38.45 40.99 37.90 39.11 +4.15
WPED 40.25 39.50 40.91 38.05 39.49 +4.53

Table 1: Case-insensitive 4-gram BLEU scores of baseNMT, WPE, WPD, WPED systems on the CH-EN
experiments. (The “IMP” column presents the improvement of test average compared to the baseNMT. )

Models NST13(dev) NST14 IMP
baseNMT 23.56 20.68 −
WPE 24.44 21.09 +0.41
WPD 25.31 21.54 +0.86
WPED 25.97 21.98 +1.3

Table 2: Case-insensitive 4-gram BLEU scores of
baseNMT, WPE, WPD, WPED systems on the DE-
EN experiments.

Models Test IMP
baseNMT 34.86 −
WPED 39.49 +4.53
baseNMT-dropout 37.02 +2.06
WPED-dropout 39.25 +4.29
baseNMT-ensemble(4) 37.71 +2.75
WPED-ensemble(4) 40.75 +5.79

Table 3: Average case-insensitive 4-gram BLEU
scores on the CH-EN experiments for baseNMT
andWPED systems, with the dropout and ensemble
techniques.

tions to the hidden states in the decoder (WPD)
leads to further improvements against baseNMT
(4.15 BLEU), because WPD adds constraints to
the state transitions through different time steps
in the decoder. Using both techniques improves
the baseline by 4.53 BLEU. On the DE-EN ex-
periments, the improvement of WPE model is 0.41
BLEU and WPD model is 0.86 BLEU on test set.
When use both techniques, the WPED improves on
the test set is 1.3 BLEU.
We compare our models with systems using

dropout and ensemble techniques. The results
show in Table 3 and 4. On the CH-EN experi-
ments, the dropout method successfully improves
the baseNMT system by 2.06 BLEU. However,
it does not work on our WPED system. The en-
semble technique improves the baseNMT system
by 2.75 BLEU. It still improves WPED by 1.26

Models Test IMP
baseNMT 20.68 −
WPED 21.98 +1.3
baseNMT-dropout 21.62 +0.94
WPED-dropout 21.71 +1.03
baseNMT-ensemble(4) 21.58 +0.9
WPED-ensemble(4) 22.47 +1.79

Table 4: Case-insensitive 4-gram BLEU scores on
the DE-EN experiments for baseNMT and WPED
systems, with the dropout and ensemble tech-
niques.

BLEU, but the improvement is smaller than on the
baseNMT. On the DE-EN experiments, the phe-
nomenon of experiments is similar to CH-EN ex-
periments. The baseNMT system improves 0.94
through dropout method and 0.9 BLEU through
ensemble method. The dropout technique also
does not work on WPED and the ensemble tech-
nique improves 1.79 BLEU. These comparisons
suggests that our system already learns better and
stable values for the parameters, enjoying some
of the benefits of general training techniques like
dropout and ensemble. Compared to dropout and
ensemble, our method WPED achieves the highest
improvement against the baseline system on both
CH-EN and DE-EN experiments. Along with en-
semble method, the improvement could be up to
5.79 BLEU and 1.79 BLEU respectively.

5.5 Word Prediction Experiments

Since we include an explicit word prediction
mechanism during the training of NMT systems,
we also evaluate the prediction performance on the
CH-EN experiments to see how the training is im-
proved.
For each sentence in the test set, we use the ini-

tial state of the given model to make prediction
about the possible words. We denote the set of top
nwords as Tn, the set of words in all the references
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baseNMT. On the DE-EN experiments, the phe-
nomenon of experiments is similar to CH-EN ex-
periments. The baseNMT system improves 0.94
through dropout method and 0.9 BLEU through
ensemble method. The dropout technique also
does not work on WPED and the ensemble tech-
nique improves 1.79 BLEU. These comparisons
suggests that our system already learns better and
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dropout and ensemble. Compared to dropout and
ensemble, our method WPED achieves the highest
improvement against the baseline system on both
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Since we include an explicit word prediction
mechanism during the training of NMT systems,
we also evaluate the prediction performance on the
CH-EN experiments to see how the training is im-
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Compare with other techniques 

• Along with ensemble method, the improvement could be up to 5.79 BLEU on the CH-

EN and 1.79 BLEU on the DE-EN 
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Precision and Recall 

• The initial state in WPE  contains more specific information about target words 

top-n baseNMT WPE
Prec. Recall Prec. Recall

top-10 45% 17% 73% 30%
top-20 33% 21% 63% 43%
top-50 21% 30% 41% 55%
top-100 14% 39% 28% 68%
top-1k 2% 67% 4% 89%
top-5k 0.7% 84% 0.9% 95%
top-10k 0.4% 90% 0.5% 97%

Table 5: Comparison between baseNMT andWPE
in precision and recall for the different prediction
size on the CH-EN experiments.

as R. We define the precision, recall of the word
prediction as follows:

precision =
|Tn ∩R|
|Tn|

∗ 100% (28)

recall =
|Tn ∩R|

|R| ∗ 100% (29)

We compare the prediction performance of
baseNMT and WPE. WPED has similar prediction
results withWPE, so we omit its results. As shown
in Table 5, baseNMT system has a relatively lower
prediction precision, for example, 45% in top 10
prediction. With an explicit training, the WPE
could achieve a much higher precision in all con-
ditions. Specifically, the precision reaches 73% in
top 10. This indicates that the initial state in WPE
contains more specific information about the pre-
diction of the target words, which may be a step
towards better semantic representation, and leads
to better translation quality.
Because the total words in the references are

limited (around 50), the precision goes down, as
expected, when a larger prediction set is consid-
ered. On the other hand, the recall of WPE is also
much higher than baseNMT. When given 1k pre-
dictions, WPE could successfully predict 89% of
the words in the reference. The recall goes up to
95% with 5k predictions, which is only 1/6 of the
current vocabulary.
To analyze the process of word prediction, we

draw the attention heatmap (Equation 16) between
the initial state s0 and the bi-directional represen-
tation of each source side word hi for an example
sentence. As shown in Figure 3, both examples
show that the initial states have a very strong atten-
tion with all the content words in the source sen-
tence. The blank cells are mostly functions words

Figure 3: Two examples of the attention heatmap
between the initial state s0 and the bi-directional
representation of each source side word hi from
the CH-EN test sets. (The English translation of
each source word is annotated in the parentheses
after it. )

or high frequent tokens such as “的 (’s)”, “是 (is)”,
“而 (and)”, “它 (it)”, comma and period. This in-
dicates that the initial state successfully encodes
information about most of the content words in the
source sentence, which contributes for a high pre-
diction performance and leads to better translation.

5.6 Improving Decoding Efficiency
To make use of the word prediction, we conduct
experiments using the predicted vocabulary, with
different vocabulary size (1k to 10k) on the CH-
EN experiments, denoted as WPE-V and WPED-V.
The comparison is made in both translation quality
and decoding time. As all our models with fixed
vocabulary size have exactly the same number of
parameters for decoding (extra mechanism is used
only for training), we only plot the decoding time
of the WPED for comparison. Figure 4 and 5 show
the results.
When we start the experiments with top 1k vo-

cabulary (1/30 of the baseline settings), the trans-
lation quality of both WPE-V and WPED-V are al-
ready higher than the baseNMT; while their decod-
ing time is less than 1/3 of an NMT system with
30k vocabulary. When the size of vocabulary in-
creases, the translation quality improves as well.
With a 6k predicted vocabulary (1/5 of the baseline
settings), the decoding time is about 60% of a full-
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information about most of the content words in the
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and decoding time. As all our models with fixed
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lation quality of both WPE-V and WPED-V are al-
ready higher than the baseNMT; while their decod-
ing time is less than 1/3 of an NMT system with
30k vocabulary. When the size of vocabulary in-
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Decoding Efficiency 

Decoding  time  with  different  vocabulary  sizes  for 
each sentence.

BLEU scores with different vocabulary sizes for each 
sentence.

• With  a  6k  predicted  vocabulary,  the  cost  is  about  60%  of  a  full-vocabulary;  the 
performance is comparable fixed-vocabulary system 
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Translation Example 
source 时代华纳公司的网络公司美国线上说,它预期二 ○ ○二年的广告与商业销售将由

二 ○ ○一年的二十七亿美元减少到十五亿美元。

reference
america online , the internet arm of time warner conglomerate , said it expects
advertising and commerce revenue to decline from us $ 2.7 billion in 2001 to us $ 1.5
in 2002 .

baseNMT
in the us line , the internet company ’s internet company said on the internet that it
expected that the business sales in 2002 would fall from $ UNK billion to $ UNK billion
in 2001 .

baseNMT
+dropout

on the united states line , UNK ’s internet company said on the internet that it expects
to reduce the annual advertising and commercial sales from $ UNK billion in 2001 to
$ 1.5 billion .

baseNMT
+ensemble

in the us line , the internet company ’s internet company said that it expected that the
advertising and commercial sales volume for 2002 would be reduced from us $ UNK
billion to us $ 1.5 billion in 2001 .

WPED
the internet company of time warner inc. , the us online , said that it expects that the
advertising and commercial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .

Table 6: Comparisons of different systems in translating the same example sentence, which from CH-
EN test sets. (“source” indicates the source sentence; “reference” indicates the human translation; the
translation results are indicated by their system names, including our best “WPED” systems. The underline
words in the reference are missed in the baseNMT output; the bold font indicates improvements over the
baseNMT system; and the italic font indicates remaining translation errors.)

crucial for large scale applications.
Our attempts demonstrate that the learning of

the large scale neural network systems is still not
good enough. In the future, it might be helpful to
analyze the benefits of jointly learning other re-
lated tasks together with machine translation, to
provide further control of the learning process. It
is interesting to demonstrate the effectiveness of
the proposed mechanism on other sequence to se-
quence learning tasks as well.
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advertising and commercial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .

Table 6: Comparisons of different systems in translating the same example sentence, which from CH-
EN test sets. (“source” indicates the source sentence; “reference” indicates the human translation; the
translation results are indicated by their system names, including our best “WPED” systems. The underline
words in the reference are missed in the baseNMT output; the bold font indicates improvements over the
baseNMT system; and the italic font indicates remaining translation errors.)

crucial for large scale applications.
Our attempts demonstrate that the learning of

the large scale neural network systems is still not
good enough. In the future, it might be helpful to
analyze the benefits of jointly learning other re-
lated tasks together with machine translation, to
provide further control of the learning process. It
is interesting to demonstrate the effectiveness of
the proposed mechanism on other sequence to se-
quence learning tasks as well.
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• WPED carries the exact information during translation, most of errors no longer exist
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Conclusion 

• The backpropagation provides no direct control of the information carried 
by the hidden states.

• Word prediction mechanism can enhance the initial state and hidden states 
of decoder as well.
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