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Neural Machine Translation

® Source sentence: X1X2 «+-Xj--- Target sentence

® ‘Target sentence: )1)2---}j--- N

e NMT system: Encoder-Decoder Framework ~ ~ T |
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® Encoder: encode all information of source sentence and generate the Initial State

® Decoder: decode target sentence start from Initial State
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® Encoder and Decoder are connected by Initial State

Encoder—>Decoder
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® [nitial State has all

® Hidden States of Decoder have target information which have not been generated

target information
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Shortage

® Initial State does not have a direct control

® Hidden States of Decoder are just supervised by current word
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Motivation

e The 1nitial state and hidden state plays an important role of translation, but
it does not have a good control in the currently research

e Propagating translation errors through the end-to-end recurrent structures
1s not enough of control the hidden states
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Word Prediction

e Translation task to generate an ordered sequence
e The goal of word prediction 1s to generate several words which 1s no order
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Word Prediction

e Words in the target sentence could be viewed as a natural annotation
e Initial State and Hidden States should contain information about words in
target sentence



Word Prediction

e For the Initial State (WPE)
e For Decoder’s Hidden States (WPp)



WP for the Initial State

e [Initial State 1s responsible for the translation of whole target sentence, it should contain

information of each word in the target sentence

Predict all words 1n target sentence
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WP for the Initial State

e [Initial State 1s responsible for the translation of whole target sentence, it should contain

information of each word in the target sentence
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WP for Decoder’s Hidden States

® The hidden states of Decoder are responsible for the translation of target words, and they

should contain information of each word which have not been translated

[nitial State
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WP for Decoder’s Hidden States

® The hidden states of Decoder are responsible for the translation of target words, and they

should contain information of each word which have not been translated

[nitial State
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Make use of word predictor

e Using large vocabulary will reduce decoding efficiency
e Exact small vocabulary will produce better translation effects
e In the testing stage, word prediction mechanism can predict a small

vocabulary to decode



Make use of word predictor

e Predicting top-k words as new vocabulary

e Using the new vocabulary to decode
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e Training stage
¢ WPE mechanism

e WPp mechanism

e Testing stage

e WPg as word predictor

WPE+WPp (WPED)
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Data and Setting

® Chinese-English (CH-EN)

e 8M LDC data set as training set
e MTO2 as validation set
e MTO03, MTO04 and MTO5 as test sets

e Both validation set and test sets have 4 references

® German-English (DE-EN)

e WMTI4 as training set
e Newstest 2012 as validation set
e Newstest 2013 as test set

e Both validation set and test set have 1 reference




Data and Setting

e The source and target vocabularies are limited to the most frequent 30K
words

e The out-of-vocabulary words mapped to a special token UNK.

e Using EOS as the end-of-sentence symbol

e Sentences were encoded using byte-pair encoding (BPE) on DE-EN
experiments



Translation quality

Using WPgp technique improves the baseline by 4.53 BLEU on the CH-EN

experiment and 1.3 BLEU on the DE-EN experiment

Models | MT02(dev) | MT03 MT04 MTO5 | Test Ave. | IMP
baseNMT |  34.04 3492 36.08 33.88 | 34.96 —

WP 39.36 37.17 3911 3620 | 3749 | +2.53

WPp 40.28 3845 4099 3790 | 39.11 | +4.15

WPEgp 40.25 39.50 4091 38.05 39.49
Chinese-English

Models NSTI13(dev) | NST14 | IMP
baseNMT 23.56 20.68 —

WP 24.44 21.09 | +0.41
WPp 25.31 21.54 | +0.86
WPgp 25.97 21.98 +1.3

German-English
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Compare with other techniques

® Along with ensemble method, the improvement could be up to 5.79 BLEU on the CH-
EN and 1.79 BLEU on the DE-EN

Models Test | IMP Models Test | IMP
baseNMT 34.86 — baseNMT 20.68 —

WPep 39.49 | +4.53 WPep 2198 | +1.3
baseNMT-dropout 37.02 | +2.06 baseNMT-dropout 21.62 | +0.94
WPEgp-dropout 39.25 | +4.29 WPEgp-dropout 21.71 | +1.03
baseNMT-ensemble(4) | 37.71 | +2.75 baseNMT-ensemble(4) | 21.58 | +0.9
WPgp-ensemble(4) 40.75 | +5.79 WPgp-ensemble(4) 22.47 | +1.79

Chinese-English German-English
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Precision and Recall

e The 1nitial state in WPg contains more specific information about target words

top-n baseNMT WPE
Prec. | Recall | Prec. | Recall
top-10 | 45% | 17% | 73% | 30%
top-20 | 33% | 21% | 63% | 43%
top-50 | 21% | 30% | 41% | 55%
top-100 | 14% | 39% | 28% | 68%
top-1k | 2% 67% 4% 89%
top-5k | 0.7% | 84% | 0.9% | 95%
top-10k | 0.4% | 90% | 0.5% | 97%
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Decoding Efficiency

e With a 6k predicted vocabulary, the cost 1s about 60% of a full-vocabulary; the
performance 1s comparable fixed-vocabulary system
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Decoding Efficiency

e With a 6k predicted vocabulary, the cost 1s about 60% of a full-vocabulary; the
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Translation Example

® WPkgp carries the exact information during translation, most of errors no longer exist

source

ARG 22 w] IR W 28 2x w) G B 26 B, e HUW - o o AR S i A K
oo AL TuED BT AL SR TT.

reference

america online , the internet arm of time warner conglomerate , said it expects

advertising and commerce revenue to decline from us $ 2.7 billion in 2001 tous $ 1.5
in 2002 .

baseNMT

in the us line , the internet company s internet company said on the internet that it
expected that the business sales in 2002 would fall from $ UNK billion to $ UNK billion
in 2001 .

WPEgp

the internet company of time warner inc. , the us online , said that 1t expects that the
advertising and commercial sales in 2002 will decrease from $ UNK billion in 2001
to us $ 1.5 billion .
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Conclusion

e The backpropagation provides no direct control of the information carried
by the hidden states.

e Word prediction mechanism can enhance the 1nitial state and hidden states
of decoder as well.
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