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NELL: Never-Ending Language 
Learner 

Inputs:  
!   initial ontology   
!   handful of examples of each predicate in ontology  
!   the web  
!   occasional interaction with human trainers 

 
The task: 

!   run 24x7, forever 
•  each day:  
  1.  extract more facts from the web to populate the initial ontology  
  2.  learn to read (perform #1) better than yesterday 



NELL: Never-Ending Language 
Learner 

Goal: 
•  run 24x7, forever 
•  each day:  

  1.  extract more facts from the web to populate given ontology  
  2.  learn to read better than yesterday 

 
Today... 
Running 24 x 7, since January, 2010 
Input:  
•  ontology defining ~800 categories and relations  
•  10-20 seed examples of each  
•  1 billion web pages (ClueWeb – Jamie Callan) 
 
Result:  
•  continuously growing KB with +90.000,000 extracted beliefs (different levels of 

confidence) 



http://rtw.ml.cmu.edu 

ECML/PKDD2012                                                  Bristol, UK                                                  September, 26th, 2012 



NELL: Never-Ending Language 
Learner 

http://rtw.ml.cmu.edu 
 
 
 
 
 
 
 
 
 
 
 
 
 





Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 
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it’s underconstrained!! 

 



Key Idea 1: Coupled semi-supervised training of 
many functions 



Coupled Training Type 1: Co-training, Multiview, 
Co-regularization  
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Type 1 Coupling Constraints in NELL 
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Coupled Training Type 2: 
Structured Outputs, Multitask, Posterior 

Regularization, Multilabel 
Learn functions with the same input, different outputs, where 
we know some constraint 



Type 2 Coupling Constraints in NELL 



Multi-view, Multi-Task Coupling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

 



Learning Relations between NP’s 



Learning Relations between NP’s 



Type 3 Coupling: Argument Types 



Pure EM Approach to Coupled 
Training 

E: jointly estimate latent labels 
for each function of each 

unlabeled example 
M: retrain all functions, based on 

these probabilistic labels 

Scaling problem: 
•  E step: 20M NP’s, 1014 NP pairs to label 
•  M step: 50M text contexts to consider for each function " 1010 

parameters to retrain 
•  even more URL-HTML contexts.. 



NELL’s Approximation to EM 

E’ step: 
•  Consider only a growing subset of the latent variable 
assignments 

 –  category variables: up to 250 NP’s per category per iteration  
 –  relation variables: add only if confident and args of correct type  
 –  this set of explicit latent assignments *IS* the knowledge base 

 
M’ step:  
•  Each view-based learner retrains itself from the updated KB  
•  “context” methods create growing subsets of contexts 



NELL Architecture 





If coupled learning is the key idea, how can 
we get new coupling constraints? 



Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

 



Key Idea 2: Discover New Coupling 
Constraints

•  first order, probabilistic horn clause 
constraints 

 
 0.93 athletePlaysSport(?x,?y) :- athletePlaysForTeam(?x,?z), 

              teamPlaysSport(?z,?y) 
 
–  connects previously uncoupled relation predicates  
–  infers new beliefs for KB 



Example Learned Horn Clauses 

0.95  athletePlaysSport(?x,basketball) :- athleteInLeague(?x,NBA)  
 
0.93 athletePlaysSport(?x,?y) :-  athletePlaysForTeam(?x,?z) 

             teamPlaysSport(?z,?y)  
 
0.91  teamPlaysInLeague(?x,NHL) :- teamWonTrophy(?x,Stanley_Cup) 
 
0.90 athleteInLeague(?x,?y):-  athletePlaysForTeam(?x,?z), 

              teamPlaysInLeague(?z,?y) 
 
0.88 cityInState(?x,?y) :- cityCapitalOfState(?x,?y),  

          cityInCountry(?y,USA) 
 
0.62* newspaperInCity(?x,New_York) :-  companyEconomicSector(?x,media), 

              generalizations(?x,blog) 



Learned Probabilistic Horn Clause Rules 



Learned Probabilistic Horn Clause Rules 





Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 





Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 

5.  Discover new relations to extend ontology 

 



Key Idea 3: Automatically Extending 
the Ontology
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OntExt (Ontology Extension) 

Everything 

Person Company City Sport 

WorksFor PlayedIn 

LocatedIn 

Plays 



Prophet 

Mining the Graph representing NELL’s KB to: 
1.  Extend the KB by predicting new relations 

(edges)that might exist between pairs of 
nodes; 

2.  Induce inference rules; 
3.  Identify misplaced edges which can be used by 

NELL as hints to identify wrong connections 
between nodes (wrong fats); 

  



Prophet 

Find open triangles in the Graph 
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Prophet 

u w 

v 

•  Compute the number of 
common neighbors   
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Category u Category w 
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Prophet 

u w 

v 

Category u Category w 

Σ 

•  Compute the number of 
common neighbors   

•  Compute the cumulative 
number of instances for the 
categories nodes Σ 

•  NΛc(uc,wc ) is the number of 
open triangles for categories 
u and w.  
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Prophet 

 
If                     > ξ  then create the new relation 
ξ = 10 (empirically) 

sport sportsLeague 

sportsTeam 



Prophet 

 
If                     > ξ  then create the new relation 
ξ = 10 (empirically) 
Name the new relation based on ReVerb 

sport sportsLeague 

sportsTeam 

isPlayedIn 



Ontology Extension in 2014 

Navarro et al., 2013 



How to Extract New Relations? 

Proposed Approach - OntExt 
Traditional IE + Open IE 
Cluster context patterns which are semantically similar although they 

may be lexically dissimilar 
Scalability: Context-pattern X Context-pattern matrix 
Classifier learns to distinguish valid relations from semantically invalid 

relations 



OntExt 
Input:   

Preprocessed 2 billion sentences from ClueWeb09 data [Callan and Hoy, 2009]. 

Category instances (e.g. city(Ottawa), city(Berlin), country(Canada), etc.) are 
used to find context patterns 

Context x Context Matrix 
 



OntExt 





Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 

5.  Discover new relations to extend ontology 

6.  Learn to infer relation instances via targeted random walks 
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1.  Tractable   
(bounded length) 

2.  Anytime 

3.  Accuracy increases as 
KB grows 

4.  combines probabilities 
from different horn 
clauses 

[Lao, Mitchell, Cohen, EMNLP 2011] 



Random walk inference: learned rules 

CityLocatedInCountry(city, country): 
 

8.04 cityliesonriver, cityliesonriver-1, citylocatedincountry  
5.42 hasofficeincity-1, hasofficeincity, citylocatedincountry 
4.98 cityalsoknownas, cityalsoknownas, citylocatedincountry 

2.85 citycapitalofcountry,citylocatedincountry-1,citylocatedincountry  
2.29 agentactsinlocation-1, agentactsinlocation, citylocatedincountry 
1.22 statehascapital-1, statelocatedincountry  
0.66 citycapitalofcountry 
 . 
 . 
 .  

7 of the 2985 learned rules for CityLocatedInCountry 



Opportunity:  
   Can infer more if we start with more  
   densely connected knowledge graph 

"  as NELL learns, it will become more dense 

"  augment knowledge graph with a second graph 
of corpus statistics:  

    <subject, verb, object> triples 

[Gardner et al, 2014] 
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NELL:  concepts  and “noun phrases” 

[Gardner et al, 2014] 
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NELL:  concepts  and “noun phrases” 

SVO triples from 500 M dependency parsed web pages (thank you Chris Re!) 

[Gardner et al, 2014] 
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NELL:  concepts  and “noun phrases” 

SVO triples from 500 M dependency parsed web pages (thank you Chris Re!) 

-  Circumvents NELL’s fixed vocabulary of relations! 

-  Sadly, adding these does not help: too sparse 

-  But clustering verb phrases based on latent 
embedding (NNMF), produces significant 
improvement 

-  {“lies on”, “runs through”, “flows through”, …} 

-  Precision/recall over 15 NELL relations: 
 KB only:            0.80 / 0.33 
 KB + SVOlatent:  0.87 / 0.42 

 

[Gardner et al., 2014] 

[Gardner et al, 2014] 



Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 

5.  Discover new relations to extend ontology 

6.  Learn to infer relation instances via targeted random walks 

7.  Vision: connect NELL and NEIL  

 



New Direction: Integrate Vision with 
Text 

The problem: 
Many things not learnable from text 
 
New direction: 

integrate NELL with NEIL (Never Ending Image Learner) [Gupta, 
Chen, 2013] 

NELL gives noun phrases it understands to NEIL 
NEIL collects images associated with these, and analyzes 
NELL, NEIL cotraining 
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Building the Knowledge Graph by Reading 
1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 

5.  Discover new relations to extend ontology 

6.  Learn to infer relation instances via targeted random walks 

7.  Vision: connect NELL and NEIL  

8.  Mutilingual NELL (Portuguese)  

 



Recently learned beliefs (from English text) 

Recently learned beliefs (from Portuguese text) 



How to Read the Web in Many Languages? 



NELL: Never-Ending Language Learner 

 
 
 
 
 
 
 
 
 
 
 
 
 

English Version 
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Multilingual Reading The Web 

Picture Adapted from http://www.xlike.org 



Key Idea 4: Cumulative, Staged Learning 
Learning X improves ability to learn Y 

1.  Classify noun phrases (NP’s) by category 

2.  Classify NP pairs by relation 

3.  Discover rules to predict new relation instances 

4.  Learn which NP’s (co)refer to which latent concepts 

5.  Discover new relations to extend ontology 

6.  Learn to infer relation instances via targeted random walks 

7.  Vision: connect NELL and NEIL  

8.  Mutilingual NELL (Portuguese)  

9.  Learn to microread single sentences 

10.  Self reflection, self-directed learning 

11.  Goal-driven reading: predict, then read to corroborate/correct 

12.  Make NELL learn by conversation (e.g, Twitter) 

13.  Add a robot body, or mobile phone body, to NELL 

 

NELL is here  
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NELL: Never-Ending Language Learner 
NELL is grown enough for new 
steps 
 

NELL turned 5 on Jan 12! ! 
Congratulations NELL!! 



NELL: Never-Ending Language Learner 
NELL is grown enough for new 
steps 
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NELL: Never-Ending Language Learner 
NELL is grown enough for new 
steps 
Knowledge on Demand – Ask NELL 



http://rtw.ml.cmu.edu 
 
 
 
estevam.hruschka@gmail.com 
 
 

Thank you very much!  
 
and thanks to Tsinghua University, Google, Yahoo!, 
NSF, DARPA, Intel, Microsoft, Fulbright, Bloomberg, 
CNPq and FAPESP for partial funding and thanks to 
Carnegie Mellon University and thanks to Federal 
University of São Carlos 
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